Da quando Giotto visitò la cometa di Halley nel 1986, altre sonde spaziali sono volate vicino a diversi nuclei cometari, come ad esempio Stardust, che ha incontrato le comete 81P-Wild e Tempel 1, oppure Deep Impact, che il 4 luglio 2005 ha impattato il nucleo della stessa cometa visitata da Stardust, la Tempel 1, con lo scopo di studiarne la composizione interna. Da queste osservazioni si è riscontrato che la maggior parte delle comete sembra avere una forma allungata o addirittura composta da due lobi, come la nota Chury (67P/Churyumov–Gerasimenko), che è stata studiata nel dettaglio dalla sonda spaziale Rosetta e dal lander Philae nel 2014 e 2015. Gli astronomi ritengono che questa strana forma possa essere dovuta alla fusione di due comete precedentemente separate. In accordo con questa teoria, le due comete dovrebbero essere caratterizzate da una densità molto bassa ed essere ricche di elementi volatili, che permettono loro di muoversi molto lentamente, in modo tale da consentire un delicato avvicinamento, senza che si verifichi uno scontro distruttivo. Per una serie di ragioni, è presumibile che questo tipo di incontri “gentili” si siano potuti verificare solo nelle fasi iniziali del Sistema solare, più di quattro miliardi di anni fa. Questo però solleva perplessità su come oggetti del genere, così fragili, antichi e delle dimensioni di Chury, siano riusciti a sopravvivere fino ad ora dato che sono costantemente soggetti a collisioni nelle regioni dove orbitano.
Un team internazionale coordinato da Patrick Michel, ricercatore del Cnrs presso il Laboratoire di Lagrange (Cnrs / Observatoire de la Côte d’Azur / Universite de Nice-Sophia Antipolis), propone ora uno scenario completamente diverso, supportato da simulazioni numeriche in parte eseguite presso il Mésocentre Sigamm dell’Osservatorio della Costa Azzurra. Le simulazioni mostrano che, durante una collisione distruttiva tra due comete, solo una piccola parte del materiale viene distrutta e ridotta in polvere. Sui lati opposti delle due comete, rispetto al punto di impatto, i materiali ricchi di elementi volatili sono in grado di resistere alla collisione e, una volta espulsi a velocità relative abbastanza basse, riescono ad attrarsi vicendevolmente e aggregarsi in nuovi piccoli corpi, che a loro volta si raggruppano insieme per formarne uno solo. Sorprendentemente, questo processo richiede solo pochi giorni, o addirittura poche ore. In questo modo, la cometa formata mantiene la sua bassa densità e le sue abbondanti sostanze volatili, proprio come Chury. Questo processo si pensa essere possibile anche in seguito a impatti a velocità di 1 km/s, che sono tipici della fascia di Kuiper, la fascia dei corpi minori che si estende oltre Nettuno.
Poiché questo tipo di collisione tra comete avviene regolarmente, Chury potrebbe essersi formata in qualsiasi momento della storia del Sistema solare e non necessariamente agli inizi, come si pensava in precedenza, risolvendo così il problema della sua sopravvivenza a lungo termine. Questo nuovo scenario spiega anche la presenza dei buchi e dei diversi strati osservati su Chury, che si sarebbero sviluppati naturalmente durante il processo di accrescimento, oppure successivamente, dopo la sua formazione.
Un ultimo punto degno di nota è che, durante la collisione che forma questo tipo di cometa, non si verifica alcun compattamento o riscaldamento significativo e pertanto la loro composizione primordiale risulta preservata: le nuove comete continuano ad essere oggetti primitivi. In altre parole, anche se Chury si fosse formata di recente, l’analisi del suo materiale ci consentirà comunque di indagare sulle origini del Sistema Solare.
Per saperne di più:
- Leggi su Nature Astronomy l’articolo “Catastrophic disruptions as the origin of bilobate comets” di Stephen R. Schwartz, Patrick Michel, Martin Jutzi, Simone Marchi, Yun Zhang & Derek C. Richardson