I dischi circumstellari che circondano le giovani stelle sono vere e proprie culle planetarie. Strutture nelle quali prendono forma i nuovi mondi che andranno poi a formare il futuro sistema planetario. Sono dunque le strutture ideali da studiare per comprendere i processi di formazione planetaria.
Le immagini ottenute a partire dai dati dell’array di telescopi Alma, in Cile, mostrano diverse strutture formate da questi dischi di gas e polveri. Materia distribuita uniformemente tranne in alcuni punti, dove sono presenti i cosiddetti gaps: solchi nella trama di questi dischi. Cosa c’è dentro a queste “tane discali”? L’ipotesi degli scienzati è che contengano pianeti in formazione. Un’ipotesi già verificata in numerosi studi e ulteriormente validata in quello condotto da un team di scienziati guidato da Richard Teague, dell’università del Michigan, pubblicato oggi su Nature.
Ciò che gli astronomi hanno fatto per arrivare a questa conclusione, oltre a studiare le polveri del disco, è stato analizzare il comportamento del gas – il 99 per cento della massa del disco protoplanetario – sfruttando le potenzialità delle antenne dell’array di telescopi Alma di captare la luce a lunghezza d’onda millimetrica emessa dal monossido di carbonio, uno dei gas che costituiscono il disco.
In particolare, utilizzando i dati ottenuti da Alma nell’ambito del progetto Disk Substructures at High Angular Resolution, Teague e colleghi hanno determinato le velocità di rotazione nelle tre dimensioni dei gas attorno al disco di Hd 163296, giovane e studiatissima (qui tre articoli su Media Inaf) stella di massa circa doppia di quella del Sole situata a 330 anni luce dalla Terra. E hanno trovato una variazione nella velocità di rotazione del gas in tre diverse posizioni: a 87, 140 e 237 unità astronomiche.
Tre siti nei quali, per la prima volta, è stata osservata una cascata del gas dagli strati superiori verso il centro del disco protoplanetario. Una cascata di gas la cui esistenza è stata suggerita da modelli teorici già dagli anni ’90.
«Ciò che probabilmente accade è che un pianeta in orbita attorno alla stella sposta il gas e la polvere, aprendo un varco», dice Teague. «Il gas al di sopra del solco così prodotto collassa al suo interno come una cascata, dando origine a un flusso rotazionale di gas lungo il disco».
Per verificare se i solchi potessero realmente ospitare pianeti in formazione, i ricercatori si sono avvalsi di simulazioni ottenute utilizzando il modello computazionale di un sistema stellare. Ebbene, i risultati indicano che le cascate di gas osservate possono essere spiegate dalla presenza di tre pianeti con masse pari alla metà, all’equivalente e al doppio della massa di Giove rispettivamente per il solco più vicino, a 87 unità astronomiche, il mediano, a 140 unità astronomiche, e il più distante, a 237 unità astronomiche.
L’osservazione delle cascate di gas – oltre a offrire un’ulteriore conferma dell’esistenza, intorno ad Hd 163296, di pianeti che si stanno formando – contribuisce anche a spiegare l’origine dell’atmosfera dei giganti gassosi.
«I pianeti si formano nello strato intermedio del disco, il cosiddetto piano mediano: un luogo freddo», spiega Teague, «protetto dalle radiazioni della stella. Pensiamo che i solchi causate dai pianeti portino gas più caldo dagli strati esterni – chimicamente più attivi – del disco verso l’interno, e che sia questo gas a formare l’atmosfera planetaria».
«Ora abbiamo un quadro molto più completo della formazione dei pianeti rispetto a quello che immaginavamo», osserva Ted Bergin, coautore dello studio. «Caratterizzando questi flussi possiamo comprendere la formazione di pianeti come Giove e descrivere la loro composizione chimica alla nascita».
Per saperne di più:
- Leggi su Nature l’articolo “Meridional flows in the disk around a young star”, di Richard Teague, Jaehan Bae ed Edwin A. Bergin