Ha una temperatura superficiale che può fondere il metallo, una pressione atmosferica pari a quella che sulla Terra troviamo a circa 900 metri sotto il livello del mare e un cielo coperto da uno strato globale di nubi di acido solforico. Nonostante questo, il gemello infernale della Terra, com’è anche chiamato Venere, può darci importanti informazioni circa il potenziale di vita su altri pianeti, rappresentando un punto di riferimento per comprendere i limiti dell’abitabilità planetaria. È quanto si legge in un recente studio di review condotto dagli scienziati planetari Stephen Kane e Paul Byrne, pubblicato sulla rivista Nature Astronomy.
Uno dei principali obiettivi della ricerca astrobiologica è il rilevamento di biofirme e la comprensione dell’abitabilità dei pianeti extraterrestri, compresa la miriade di fattori che controllano l’evoluzione di questi mondi. Astro2020 e Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032, due indagini che delineano le raccomandazioni per l’esplorazione spaziale futura, danno priorità alla comprensione di questo aspetto, ritenendolo un tema di ricerca chiave. Lo studio di Venere e della sua divergenza in termini di evoluzione climatica rispetto alla Terra sono fondamentali per perseguire quest’obiettivo ad elevata priorità scientifica.
Venere: l’antitesi dell’abitabilità
La domanda che forse vi starete ponendo è perché studiare l’abitabilità esoplanetaria utilizzando un pianeta inospitale come Venere. Nello studio in questione, la risposta dei ricercatori al quesito è chiarificatrice: «Rispetto alla Terra, Venere rappresenta l’antitesi dell’abitabilità, ma poiché illustra il potenziale di inabitabilità della maggior parte degli esopianeti di dimensioni terrestri (e rappresenta forse anche un’anteprima del futuro della Terra stessa), la comprensione del percorso che ha portato il pianeta a essere tale è importante quanto la comprensione del percorso che ha portato la Terra a essere abitabile». C’è inoltre una seconda spiegazione, che è connessa alla prima. La ricerca della vita nell’universo richiede lo sviluppo di una profonda comprensione degli oggetti all’interno del Sistema solare, in modo da poter interpretare meglio i dati dei pianeti in orbita attorno ad altre stelle. Una parte fondamentale di questa comprensione risiede nel confronto tra Venere e la Terra, poiché i due pianeti si trovano agli estremi opposti dello spettro di abitabilità.
«Spesso presumiamo che la Terra sia il modello di abitabilità, ma se consideriamo questo pianeta isolatamente, non sappiamo quali siano i confini e i limiti di questa abitabilità. Venere ci permette di conoscere questi limiti», sottolinea Stephen Kane, astrofisico della Uc Riverside e primo autore dello studio.
Venere e la Terra: gemelli separati alla nascita
Nel Sistema solare, Venere è il pianeta più simile alla Terra. Nati dagli stessi “semi”, i due mondi hanno massa, dimensioni e probabilmente composizione simili. Tra i due ci sono tuttavia grandi differenze, dovute al fatto che a un certo punto della loro storia evolutiva i due corpi hanno preso strade diverse: la Terra è diventata abitabile, mentre Venere è diventato il mondo inospitale che conosciamo oggi.
Venere sembra essere privo di un campo magnetico intrinseco, ha un’insolazione che è quasi il doppio di quella della Terra e un periodo di rotazione retrogrado di 243 giorni. La sua atmosfera, molto densa, è quasi interamente composta da anidride carbonica, con una piccola quantità di azoto e tracce di altri gas come biossido di azoto, argon e vapore acqueo. Il pianeta, inoltre, è avvolto da uno strato globale di nubi di acido solforico. L’insieme di tutte queste proprietà fisiche e chimiche rende la superficie di Venere più calda di un forno, motivo per cui è considerato il gemello infernale della Terra. Venere ci offre quindi un punto di ancoraggio nel discorso sull’abitabilità planetaria, poiché la sua storia evolutiva rappresenta un percorso alternativo rispetto alla Terra, anche se le origini di entrambi i mondi sono, presumibilmente, simili. La possibilità di studiare un pianeta relativamente vicino, di dimensioni terrestri, con un clima e un’abitabilità drammaticamente diversi dal nostro pianeta è un’opportunità che gli esopianeti non possono offrire. Venere rappresenta quindi un mondo accessibile per comprendere come l’abitabilità dei grandi mondi rocciosi si evolve nel tempo e quali condizioni limitano i confini dell’abitabilità.
Un mondo, due approcci
Secondo gli scienziati, i modelli evolutivi che hanno portato Venere a essere quello che è oggi sono due. Il primo modello prevede che il pianeta si sia formato con un’atmosfera ricca di vapore d’acqua sopra un oceano di magma. Vista la vicinanza al Sole, il corpo celeste avrebbe poi disperso il suo calore nello spazio attraverso la perdita di quell’acqua atmosferica. In questa ipotesi, il pianeta avrebbe acquisito presto la sua ingombrante atmosfera e le condizioni infernali di superficie, e non sarebbe mai stato abitabile. L’altro modello suggerisce invece che, dopo la sua formazione, il pianeta sia stato in grado di raffreddarsi a sufficienza per far condensare l’acqua atmosferica sulla superficie. In questo caso, le nubi potrebbero aver contribuito a mantenere per un breve periodo condizioni superficiali più clementi anche sotto un Sole cocente, prima che imponenti eruzioni vulcaniche lo portassero nel suo stato attuale, probabilmente negli ultimi miliardi di anni.
Date queste incertezze riguardanti l’evoluzione di Venere e le implicazioni che questa evoluzione ha rispetto agli esopianeti terrestri, gli autori propongono per il loro studio un approccio su due fronti: il primo coinvolge la scienza intrinseca di Venere, che è possibile studiare attraverso missioni spaziali dedicate; l’altro la scienza degli exo-venus, ovvero lo studio degli esopianeti analoghi a Venere.
Lo studio delle proprietà intrinseche del pianeta attraverso missioni spaziali permetterebbe di stabilire definitivamente quale modello evolutivo sia corretto, spiegano i ricercatori. Ad esempio, l’analisi delle composizioni elementari e isotopiche dei gas nobili dell’atmosfera di Venere porrebbe vincoli importanti sull’inventario di sostanze volatili presenti agli albori del pianeta e sulla storia della perdita dell’acqua. Missioni dedicate permetterebbero inoltre di comprendere meglio l’attività vulcanica sul pianeta, consentendo di fare delle stime del tasso di degassamento e creare modelli della sua struttura interna.
A questo proposito, la Nasa ha in programma due missioni gemelle su Venere per la fine di questo decennio, e il planetologo Kane è coinvolto in entrambe. Una è la missione DaVinci (Deep Atmosphere Venus Investigation of Noble Gas, Chemistry, and Imaging), che esplorerà l’atmosfera del pianeta per misurarne i gas nobili e altri elementi chimici. L’altra è la missione Veritas (Venus Emissivity, Radio Science, InSAR, Topography & Spectroscopy), che consentirà agli scienziati di ricostruire mappe dettagliate del paesaggio venusiano in 3d, rivelando se il pianeta abbia una tettonica a placche o vulcani attivi.
L’approccio parallelo allo studio delle proprietà intrinseche di Venere riguarda invece l’analisi del vasto inventario – sempre in rapida crescita – di esopianeti terrestri simili a Venere: i cosiddetti analoghi. In questo senso, sottolineano gli scienziati, uno studio con il metodo dei transiti, che ha una notevole propensione verso il rilevamento di pianeti di breve periodo, è più adatto a scoprire i pianeti che hanno proprietà atmosferiche simili a Venere piuttosto che alla Terra, e dunque a testare i limiti dell’abitabilità.
Rimanendo sempre in tema di indagini per lo studio degli esopianeti e della loro abitabilità, gli autori sottolineano come gli esopianeti in orbita attorno a stelle luminose offrano opportunità ideali per osservazioni di follow-up tramite spettroscopia di trasmissione con Jwst e altri osservatori. Caratteristiche spettroscopiche chiave come l’assorbimento dell’anidride carbonica a 2.7 e 4.3 μm possono essere usate per distinguere un’atmosfera da quella presente sulla Terra, grazie anche all’estensione delle osservazioni alle lunghezze d’onda dell’Uv, dove l’assorbimento dell’ozono è prevalente. Inoltre, il rilevamento di combinazioni di biosignature importanti, come acqua e metano, può identificare pianeti con maggiori probabilità di ospitare condizioni di superficie temperate. È attraverso tali analisi spettroscopiche, comprese quelle nell’infrarosso, che la sfida di distinguere tra condizioni superficiali simili a quelle di Venere e della Terra potrebbe essere meglio superata.
Una lezione per tutti noi
In definitiva, l’articolo sottolinea l’importanza di studiare Venere per due ragioni principali. Una è la possibilità, grazie ai dati che saranno ottenuti dalle future missioni, di utilizzare Venere per comprendere i confini dell’abitabilità planetaria di altri pianeti, e garantire così che le deduzioni sulla possibilità che esista vita su altri mondi siano corrette. «La parte sconfortante della ricerca di vita altrove nell’universo è che non avremo mai dati in situ per un esopianeta. Non andremo lì, non atterreremo e non effettueremo misurazioni dirette», dice a questo proposito Kane. «Se pensiamo che un pianeta abbia vita sulla superficie, potremmo non accorgerci mai di sbagliare e sognare un pianeta in cui essa sia presente quando invece non lo è. Riusciremo a capire bene questo aspetto solo studiando adeguatamente gli esopianeti di dimensioni terrestri che possiamo visitare. Venere ci offre questa possibilità».
L’altro motivo riguarda il fatto che una conoscenza più approfondita di Venere è utile in quanto il pianeta potrebbe rappresentare un’anteprima di come potrebbe essere in futuro il nostro pianeta. «Uno dei motivi principali per studiare Venere ha a che fare con il nostro sacro dovere di essere custodi della Terra, per preservarne il futuro», sottolinea Kane. «La mia speranza è che dallo studio dei processi che hanno prodotto le attuali condizioni su Venere, possiamo trarne una lezione. Può succedere anche a noi. È una questione di come e quando».
Comprendere appieno come un pianeta terrestre diventi abitabile e rimanga tale è una sfida fondamentale per la comunità scientifica, data la diversità e la complessità dei processi intrinseci ed estrinseci che contribuiscono a sostenere condizioni abitabili su scale temporali geologiche e biologiche. Di fronte a questa sfida, è imperativo sfruttare l’intera gamma di dati sull’evoluzione atmosferica dei pianeti terrestri all’interno del Sistema solare, concludono i ricercatori. Sebbene Venere rappresenti un mondo inabitabile, lo studio di Venere, la definizione del suo percorso evolutivo rispetto alla Terra e il riconoscimento di potenziali ambienti superficiali di tipo venusiano dedotti dagli spettri atmosferici di altri esopianeti, costituiranno insieme componenti essenziali per migliorare la nostra comprensione dell’abitabilità planetaria.
Il punto di vista di Giuseppe Piccioni, dirigente di ricerca Inaf
«Sono sicuramente d’accordo nell’affermare che il pianeta Venere è un valido punto di riferimento (o di ancoraggio, come riportato in articolo) per sostenere il concetto di abitabilità in termini più generali», dice a Media Inaf il planetologo dell’Inaf Iaps di Roma Giuseppe Piccioni, che abbiamo raggiunto per un commento. «Nella ricerca degli esopianeti, oggi possiamo senz’altro affermare che la stragrande maggioranza degli esopianeti potenzialmente abitabili sono più simili a Venere di quanto possano esserlo alla Terra. Oggi sappiamo che Venere è quanto di più inospitale e inabitabile ci possa essere nel Sistema solare, ma nel passato ha condiviso molte più similitudini con il nostro pianeta di quante ne abbia già oggi di rilevanti. Non è escluso infatti che Venere in passato fosse persino più abitabile della Terra ma che inesorabilmente abbia seguito suo malgrado una evoluzione molto più infausta del nostro pianeta. In questo senso, oggi potremmo osservare degli esopianeti “abitabili” molto simili a quelli del pianeta Venere all’inizio della sua formazione. Il concetto di abitabilità va infatti sempre legato al tempo di osservazione, dunque non è mai assoluto. Occorre anche dire che il concetto di zona abitabile, legato alla distanza del pianeta dalla stella madre, è comunque una semplificazione basata sulla nostra conoscenza terrestre e su quello che oggi possiamo osservare negli esopianeti. Escludiamo in questo modo una vastissima quantità di mondi potenzialmente abitabili come gli ocean worlds, ovvero corpi celesti che hanno oceani sotto-superficiali, come ad esempio i satelliti ghiacciati di Giove e Saturno, che potrebbero ospitare vita ma con una evoluzione molto diversa da quella terrestre. Fino a quando non ne sapremo di più, non potremo includere questi deep habitat nel cesto delle nostre possibilità».
Per saperne di più:
- Leggi su Nature Astronomy l’articolo “Venus as an anchor point for planetary habitability” di Stephen R. Kane & Paul K. Byrne